These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-124 regulates lactate transportation in the muscle of largemouth bass (micropterus salmoides) under hypoxia by targeting MCT1. Author: Zhao LL, Wu H, Sun JL, Liao L, Cui C, Liu Q, Luo J, Tang XH, Luo W, Ma JD, Ye X, Li SJ, Yang S. Journal: Aquat Toxicol; 2020 Jan; 218():105359. PubMed ID: 31765944. Abstract: Carbohydrate metabolism switches from aerobic to anaerobic (glycolysis) to supply energy in response to acute hypoxic stress. Acute hypoxic stress with dissolved oxygen (DO) levels of 1.2 ± 0.1 mg/L for 24 h and 12 h re-oxygenation was used to investigate the response of the anaerobic glycolytic pathway in Micropterus salmoides muscle. The results showed that the glucose concentration was significantly lower in muscle, while the lactic acid and pyruvic acid concentrations tended to increase during hypoxic stress. No significant difference was observed in muscle glycogen, and ATP content fluctuated significantly. The activities of gluconeogenesis-related enzymes were slightly elevated, such as phosphoenolpyruvate carboxykinase (PEPCK). The activities of the glycolytic enzymes increased after the induction of hypoxia, such as hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH). Curiously, phosphofructokinase (PFK) activity was significantly down-regulated within 4 h during hypoxia, although these effects were transient, and most indices returned to control levels after 12 h of re-oxygenation. Upregulated hif-1α, ampkα, hk, glut1, and ldh mRNA expression suggested that carbohydrate metabolism was reprogrammed under hypoxia. Lactate transport was regulated by miR-124-5p according to quantitative polymerase chain reaction and dual luciferase reporter assays. Our findings provide new insight into the molecular regulatory mechanism of hypoxia in Micropterus salmoides muscle.[Abstract] [Full Text] [Related] [New Search]