These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fiber Threshold Accommodation as a Mechanism of Burst and High-Frequency Spinal Cord Stimulation.
    Author: Arle JE, Mei L, Carlson KW.
    Journal: Neuromodulation; 2020 Jul; 23(5):582-593. PubMed ID: 31774232.
    Abstract:
    OBJECTIVES: Burst and high-frequency spinal cord stimulation (SCS), in contrast to low-frequency stimulation (LFS, < 200 Hz), reduce neuropathic pain without the side effect of paresthesia, yet it is unknown whether these methods' mechanisms of action (MoA) overlap. We used empirically based computational models of fiber threshold accommodation to examine the three MoA. MATERIALS AND METHODS: Waveforms used in SCS are composed of cathodic, anodic, and rest phases. Empirical studies of human peripheral sensory nerve fibers show different accommodation effects occurring in each phase. Notably, larger diameter fibers accommodate more than smaller fibers. We augmented our computational axon model to replicate fiber threshold accommodation behavior for diameters from 5 to 15 μm in each phase. We used the model to predict threshold change in variations of burst, high frequency, and LFS. RESULTS: The accommodation model showed that 1) inversion of larger and smaller diameter fiber thresholds produce a therapeutic window in which smaller fibers fire while larger ones do not and 2) the anodic pulses increase accommodation and perpetuate threshold inversion from burst to burst and between cathodic pulses in burst, high frequency, and variations, resulting in an amplitude "window" in which larger fibers are inactivated while smaller fibers fire. No threshold inversion was found for traditional LFS. CONCLUSIONS: The model, based on empirical data, predicts that, at clinical amplitudes, burst and high-frequency SCS do not activate large-diameter fibers that produce paresthesia while driving medium-diameter fibers, likely different from LFS, which produce analgesia via different populations of dorsal horn neural circuits.
    [Abstract] [Full Text] [Related] [New Search]