These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A class I TGA transcription factor from Tripterygium wilfordii Hook.f. modulates the biosynthesis of secondary metabolites in both native and heterologous hosts. Author: Han J, Liu HT, Wang SC, Wang CR, Miao GP. Journal: Plant Sci; 2020 Jan; 290():110293. PubMed ID: 31779893. Abstract: Class I TGA transcription factors (TFs) are known to participate in plant resistance responses, however, their regulatory functions in the biosynthesis of secondary metabolites were rarely revealed. In this study, a class I TGA TF, TwTGA1, from Tripterygium wilfordii Hook.f. was cloned and characterized. Overexpression of TwTGA1 in T. wilfordii Hook.f. cells increased the production of triptolide and two sesquiterpene pyridine alkaloids, which was further enhanced by methyl jasmonate (MeJA) treatment. RNA interference of TwTGA1 showed no significant effects on the production of these metabolites, indicating the existence of other TGA partner(s) with overlapping functions. Heterologous expression of TwTGA1 in tobacco By-2 cells promoted the biosynthesis of pyridine alkaloids. Under the elicitation of MeJA, the contents of nonpyrrolidine alkaloids further increased but not for nicotine. TwTGA1 could induce the expression of Putrescine N-methyltransferase (PMT) and N-methylputrescine oxidase 1 (MPO1) through binding to their promoters. Finally, transient expression of TwTGA1 in leaves of Catharanthus roseus changed both the profiles of vinca alkaloids (increased contents of serpentine and catharanthine, but decreased that of vinblastine) and the expressions of biosynthesis-related genes. The metabolic and transcriptional data indicated a relationship between jasmonic acid signaling pathway and the functions of TwTGA1.[Abstract] [Full Text] [Related] [New Search]