These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of an Industrial Soybean Byproduct for the Potential Development of a Probiotic Animal Feed Additive with Bacillus Species.
    Author: Mahoney R, Weeks R, Zheng T, Huang Q, Dai W, Cao Y, Liu G, Guo Y, Chistyakov V, Chikindas ML.
    Journal: Probiotics Antimicrob Proteins; 2020 Sep; 12(3):1173-1178. PubMed ID: 31784951.
    Abstract:
    Probiotics are gaining public attention for their application in animal husbandry due to their ability to promote growth and prevent infections. Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 are two spore-forming probiotic microorganisms that have been demonstrated to provide health benefits for poultry when supplemented into their diet. These strains can be propagated on a wide range of substrates, including soybean-derived byproducts from the food processing industry. Soybean-derived byproducts are often incorporated into animal feeds, but the value of an additive could potentially be increased by the addition of probiotic microorganisms, which may decrease production costs and reduce environmental impact. In this study, a soybean byproduct and a desalted version of this byproduct were evaluated as potential substrates for the growth of two probiotic bacilli species. Chemical analysis of these byproducts showed favorable carbohydrate, fat, and amino acid profiles, which were not affected by the desalting process. The desalted byproduct was further evaluated as a substrate for the growth of B. subtilis KATMIRA1933 and B. amyloliquefaciens B-1895 under solid-state conditions, and samples from this experiment were visualized by scanning electron microscopy. The results of this study indicate that the desalted soybean byproduct is a suitable substrate for the propagation of the two Bacillus species, which grew to numbers sufficient for the formulation of a probiotic animal feed additive.
    [Abstract] [Full Text] [Related] [New Search]