These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Author: Xu B, Liu C, Sun H, Wang X, Huang F. Journal: Colloids Surf B Biointerfaces; 2020 Mar; 187():110646. PubMed ID: 31785851. Abstract: Pickering emulsion-based delivery of liposoluble bioactive ingredients employing protein nanoparticles as biocompatible emulsifiers is a promising choice for food, cosmetic, and medical industries. This paper reports a novel design of a protein nano-ring (termed SR') derived from chaperonin GroEL as an emulsifying agent, which has a naturally evolved hydrophobic binding rim in addition to its well-defined shape. It is shown that SR' adsorbed at rosemary oil/water interface and formed stable oil-in-water Pickering emulsions, with dispersed droplet size being dependent on the SR' concentration and oil/water ratio as well. The optimal formulation yielding stable nano-emulsions was determined to be at a SR' concentration between 0.30 wt.% and 0.45 wt.%, and an oil/water ratio of 0.05-0.20 (v/v). Meanwhile, we demonstrate that nano-sized Pickering droplets could be easily prepared irrespective of the examined external factors including pH, temperature and ionic strength, with the lowest droplet sizes being produced at pH = 7.0, temperature ≤ 40 °C, and ionic strength (NaCl concentration) ≤ 50 mM. Besides, rheological analysis revealed the gelation propensity of SR'-stabilized emulsions with high oil/water ratios, an advantageous property that would further enhance the emulsion stability. Finally, it is shown that the SR' emulsified system is able to protect β-carotene, which was used as a model of bioactive but labile compound. This work, in the context of the current drive for biocompatibility and sustainability, is believed to provide opportunities for emulsion-based applications to switch towards greener solutions.[Abstract] [Full Text] [Related] [New Search]