These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Promoting the nitrogen removal of anammox process by Fe-C micro-electrolysis. Author: Xie F, Ma X, Zhao B, Cui Y, Zhang X, Yue X. Journal: Bioresour Technol; 2020 Feb; 297():122429. PubMed ID: 31791919. Abstract: In this study, a process that combines iron-carbon micro-electrolysis (IC-ME) with the anammox process was successfully established for promoting nitrogen removal, especially the removal of nitrate by-product. Compared with the conventional anammox process, the average total nitrogen removal efficiency of the combined system increased from 64.6% to 90.2% and 83.8% when the system was effectively operated for 4 days (Phase 2) and 13 days (Phase 3), respectively. In this combined system, IC-ME played a dual role: 1) converting the nitrate to ammonia as the nitrogen substrate for further degradation, and 2) producing Fe2+, Fe3+ and H2 for the nitrogen removal processes of NH4+ oxidation with Fe3+ reduction (Feammox), nitrate-dependent Fe2+ oxidation (NDFO), and denitrification, in addition to the anammox process. Microbial analysis using 16S rRNA high-throughput sequencing revealed Candidatus Kuenenia and Candidatus Brocadia as the major anammox genera, accounting for 1.01% and 0.15%, respectively.[Abstract] [Full Text] [Related] [New Search]