These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental competence of domestic cat follicular oocytes after fertilization in vitro. Author: Goodrowe KL, Wall RJ, O'Brien SJ, Schmidt PM, Wildt DE. Journal: Biol Reprod; 1988 Sep; 39(2):355-72. PubMed ID: 3179386. Abstract: Empirical evaluation of variables affecting oocyte collection, in vitro fertilization, and embryo transfer resulted in establishing a successful procedure for the artificial production of offspring in the domestic cat. Female cats were treated with pregnant mare's serum gonadotropin (PMSG, 150 IU) followed 72 or 80 h later with 100 or 200 IU human chorionic gonadotropin (hCG). After laparoscopic collection, follicular oocytes were inseminated in vitro with ejaculated, processed spermatozoa, cultured (37 degrees C, 5% CO2), and then examined for evidence of fertilization. Two- to 4-cell stage embryos were transferred to the oviducts of oocyte donors. Oocyte donor cats and naturally mated controls also were subjected to sequential laparoscopic examinations and blood sampling to assess corpora lutea (CL) function. At 24-30 h of culture, fewer (p less than 0.001) degenerate oocytes were observed in cats receiving 100 IU hCG (8.2%) compared to those receiving 200 IU (20.6%), regardless of the PMSG-hCG interval. Overall fertilization (48.1%) and cleavage (45.2%, at 30 h post-insemination) rates were greatest following an 80-h PMSG-hCG interval combined with the 100 IU hCG dose. Five of the 6 cats receiving 6 to 18 embryos became pregnant and produced from 1 to 4 kittens/litter. Gonadotropin-treated females subjected to follicular aspiration produced morphologically normal CL and circulating progesterone patterns that were qualitatively similar (p greater than 0.05) to control cats. These data indicate that domestic cat follicular oocytes are capable of fertilization in vitro, but success is dependent on both the timing and dose of the hCG stimulus. Follicles subjected to aspiration appear capable of forming normal, functional CL and the birth of live young after embryo transfer unequivocally demonstrates, for the first time, the developmental competence of in vitro-fertilized carnivore oocytes.[Abstract] [Full Text] [Related] [New Search]