These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design and Synthesis of N-phenyl Phthalimides as Potent Protoporphyrinogen Oxidase Inhibitors.
    Author: Gao W, Li X, Ren D, Sun S, Huo J, Wang Y, Chen L, Zhang J.
    Journal: Molecules; 2019 Nov 29; 24(23):. PubMed ID: 31795340.
    Abstract:
    Protoporphyrinogen oxidase (PPO) has been identified as one of the most promising targets for herbicide discovery. A series of novel phthalimide derivatives were designed by molecular docking studies targeting the crystal structure of mitochondrial PPO from tobacco (mtPPO, PDB: 1SEZ) by using Flumioxazin as a lead, after which the derivatives were synthesized and characterized, and their herbicidal activities were subsequently evaluated. The herbicidal bioassay results showed that compounds such as 3a (2-(4-bromo-2,6-difluorophenyl) isoindoline-1,3-dione), 3d (methyl 2-(4-chloro-1,3-dioxoisoindolin-2-yl)-5-fluorobenzoate), 3g (4-chloro-2-(5-methylisoxazol-3-yl) isoindoline-1,3-dione), 3j (4-chloro-2-(thiophen-2-ylmethyl) isoindoline-1,3-dione) and 3r (2-(4-bromo-2,6-difluorophenyl)-4-fluoroisoindoline-1,3-dione) had good herbicidal activities; among them, 3a showed excellent herbicidal efficacy against A. retroflexus and B. campestris via the small cup method and via pre-emergence and post-emergence spray treatments. The efficacy was comparable to that of the commercial herbicides Flumioxazin, Atrazine, and Chlortoluron. Further, the enzyme activity assay results suggest that the mode of action of compound 3a involves the inhibition of the PPO enzyme, and 3a showed better inhibitory activity against PPO than did Flumioxazin. These results indicate that our molecular design strategy contributes to the development of novel promising PPO inhibitors.
    [Abstract] [Full Text] [Related] [New Search]