These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct determination of mode-projected electron-phonon coupling in the time domain. Author: Na MX, Mills AK, Boschini F, Michiardi M, Nosarzewski B, Day RP, Razzoli E, Sheyerman A, Schneider M, Levy G, Zhdanovich S, Devereaux TP, Kemper AF, Jones DJ, Damascelli A. Journal: Science; 2019 Dec 06; 366(6470):1231-1236. PubMed ID: 31806810. Abstract: Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of nonthermal electrons, a material's dominant scattering processes can be revealed. Here, we present a method for extracting the electron-phonon coupling strength in the time domain, using time- and angle-resolved photoemission spectroscopy (TR-ARPES). This method is demonstrated in graphite, where we investigate the dynamics of photoinjected electrons at the [Formula: see text] point, detecting quantized energy-loss processes that correspond to the emission of strongly coupled optical phonons. We show that the observed characteristic time scale for spectral weight transfer mediated by phonon-scattering processes allows for the direct quantitative extraction of electron-phonon matrix elements for specific modes.[Abstract] [Full Text] [Related] [New Search]