These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Separation-Free Electrogenerated Chemiluminescence Immunoassay Incorporating Target Assistant Proximity Hybridization and Dynamically Competitive Hybridization of a DNA Signal Probe.
    Author: Wang B, Shi S, Yang X, Wang Y, Qi H, Gao Q, Zhang C.
    Journal: Anal Chem; 2020 Jan 07; 92(1):884-891. PubMed ID: 31808341.
    Abstract:
    A separation-free electrogenerated chemiluminescence (ECL) immunoassay for biomarkers has been developed incorporating target assistant proximity hybridization and dynamically competitive hybridization of a DNA ECL signal probe for the first time. In this work, the biomarkers of acute myocardial infarction including cardiac troponin I (cTnI), cardiac troponin T (cTnT), and myoglobin (Myo) were chosen as the model proteins while the corresponding antibody was utilized as a recognition probe and the DNA5 tagged with ruthenium complex was chosen as an ECL signal probe (DNA5-Ru1). The biosensors were fabricated by covalently coupling the capture probe DNA1 onto the surface of a glassy carbon electrode, and then, a competitor ss-DNA2 was hybridized with DNA1. When the biosensor was incubated in the solution containing a target protein, the recognition probes (DNA3-Ab1 and DNA4-Ab2), DNA5-Ru1, and the coreactant tri-n-propylamine, the target protein was bounded with two antibodies of the recognition probes and thus induced the sufficient proximity hybridization of DNA3 with DNA1, DNA4 with DNA5-Ru1, and DNA5-Ru1 with DNA1 and the unwinding of the competitor DNA2 with DNA1, and ECL measurement was performed in separation-free format. It was found that the hybridization base number and length of DNA1 and a competing hybridization of DNA5-Ru1 with DNA2 for DNA1 have important effects. The developed ECL method showed a quite low detection limit of 0.4 pg/mL for cTnI, 0.5 pg/mL for cTnT, and 0.5 ng/mL for Myo. The fabricated biosensor exhibited stability and reusability. This work demonstrated that the developed ECL immunoassay is a promising separation-free and flexible strategy for quantitation of multiple proteins using one biosensor.
    [Abstract] [Full Text] [Related] [New Search]