These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NAPDH Oxidase-Specific Flow Cytometry Allows for Rapid Genetic Triage and Classification of Novel Variants in Chronic Granulomatous Disease.
    Author: Sacco KA, Smith MJ, Bahna SL, Buchbinder D, Burkhardt J, Cooper MA, Hartog NL, Kobrynski L, Patel KP, Abraham RS.
    Journal: J Clin Immunol; 2020 Jan; 40(1):191-202. PubMed ID: 31813112.
    Abstract:
    PURPOSE: Chronic granulomatous disease (CGD) is an innate immune deficiency, primarily affecting the phagocytic compartment, and presenting with a diverse phenotypic spectrum ranging from severe childhood infections to monogenic inflammatory bowel disease. Dihydrorhodamine (DHR) flow cytometry is the standard diagnostic test for CGD, and correlates with NADPH oxidase activity. While there may be genotype correlation with the DHR flow pattern in some patients, in several others, there is no correlation. In such patients, assessment by flow cytometric evaluation of NADPH oxidase-specific (NOX) proteins provides a convenient and rapid means of genetic triage, though immunoblotting has long been used for this purpose. METHODS AND RESULTS: We describe the clinical utility of the NOX flow cytometry assay through assessment of X-linked and autosomal recessive CGD patients and their first-degree relatives. The assessment of specific NOX proteins was correlated with overall NADPH oxidase function (DHR flow), clinical phenotype and genotype. NOX-specific protein assessment is a valuable adjunct to DHR assessment and genotyping to classify and characterize CGD patients. CONCLUSIONS: The atypical clinical presentation of some CGD patients can make genotype-phenotype correlation with DHR flow data challenging. Genetic testing, while useful for confirmation of diagnosis, can take several weeks, and in some patients does not provide a conclusive answer. However, NADPH-oxidase-specific protein flow assessment offers a rapid alternative to identification of the underlying genetic defect in cellular subsets, and can be utilized as a reflex test to an abnormal DHR flow. Further, it can provide insight into correlation between oxidative burst relative to protein expression in granulocytes and monocytes.
    [Abstract] [Full Text] [Related] [New Search]