These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. Author: Karkhanis V, Alinari L, Ozer HG, Chung J, Zhang X, Sif S, Baiocchi RA. Journal: J Biol Chem; 2020 Jan 31; 295(5):1165-1180. PubMed ID: 31822509. Abstract: Protein arginine methyltransferase-5 (PRMT5) is overexpressed in aggressive B-cell non-Hodgkin's lymphomas, including mantle cell lymphoma and diffuse large B-cell lymphoma, and supports constitutive expression of CYCLIN D1 and c-MYC. Here, we combined ChIP analysis with next-generation sequencing to identify microRNA (miRNA) genes that are targeted by PRMT5 in aggressive lymphoma cell lines. We identified enrichment of histone 3 dimethylation at Arg-8 (H3(Me2)R8) in the promoter regions of miR33b, miR96, and miR503. PRMT5 knockdown de-repressed transcription of all three miRNAs, accompanied by loss of recruitment of epigenetic repressor complexes containing PRMT5 and either histone deacetylase 2 (HDAC2) or HDAC3, enhanced binding of co-activator complexes containing p300 or CREB-binding protein (CBP), and increased acetylation of specific histones, including H2BK12, H3K9, H3K14, and H4K8 at the miRNA promoters. Re-expression of individual miRNAs in B-cell lymphoma cells down-regulated expression of PRMT5, CYCLIN D1, and c-MYC, which are all predicted targets of these miRNAs, and reduced lymphoma cell survival. Luciferase reporter assays with WT and mutant 3'UTRs of CYCLIN D1 and c-MYC mRNAs revealed that binding sites for miR33b, miR96, and miR503 are critical for translational regulation of the transcripts of these two genes. Our findings link altered PRMT5 expression to transcriptional silencing of tumor-suppressing miRNAs in lymphoma cells and reinforce PRMT5's relevance for promoting lymphoma cell growth and survival.[Abstract] [Full Text] [Related] [New Search]