These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of the PKA signaling pathway stimulates oxalate transport by human intestinal Caco2-BBE cells.
    Author: Arvans D, Alshaikh A, Bashir M, Weber C, Hassan H.
    Journal: Am J Physiol Cell Physiol; 2020 Feb 01; 318(2):C372-C379. PubMed ID: 31825656.
    Abstract:
    Most kidney stones are composed of calcium oxalate, and small increases in urine oxalate enhance the stone risk. The mammalian intestine plays a crucial role in oxalate homeostasis, and we had recently reported that Oxalobacter-derived factors stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells through PKA activation. We therefore evaluated whether intestinal oxalate transport is directly regulated by activation of the PKA signaling pathway. To this end, PKA was activated with forskolin and IBMX (F/I). F/I significantly stimulated (3.7-fold) [14C]oxalate transport by C2 cells [≥49% of which is mediated by the oxalate transporter SLC26A6 (A6)], an effect completely blocked by the PKA inhibitor H89, indicating that it is PKA dependent. PKA stimulation of intestinal oxalate transport is not cell line specific, since F/I similarly stimulated oxalate transport by the human intestinal T84 cells. F/I significantly increased (2.5-fold) A6 surface protein expression by use of immunocytochemistry. Assessing [14C]oxalate transport as a function of increasing [14C]oxalate concentration in the flux medium showed that the observed stimulation is due to a F/I-induced increase (1.8-fold) in Vmax and reduction (2-fold) in Km. siRNA knockdown studies showed that significant components of the observed stimulation are mediated by A6 and SLC26A2 (A2). Besides enhancing A6 surface protein expression, it is also possible that the observed stimulation is due to PKA-induced enhanced A6 and/or A2 transport activity in view of the reduced Km. We conclude that PKA activation positively regulates oxalate transport by intestinal epithelial cells and that PKA agonists might therapeutically impact hyperoxalemia, hyperoxaluria, and related kidney stones.
    [Abstract] [Full Text] [Related] [New Search]