These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals.
    Author: Mo H, Zhang N, Li H, Li F, Pu R.
    Journal: Braz J Med Biol Res; 2019; 52(12):e8754. PubMed ID: 31826180.
    Abstract:
    Cuscuta chinensis Lam. (Convolvulaceae) is an important herbal medicine widely used to improve sexual function, treat osteoporosis, and prevent aging, and has been reported to exhibit anti-osteoporotic effects in vitro. However, the activity of Cuscuta chinensis Lam. on glucocorticoid-induced osteoporosis still remains unclear. The present study aimed to assess the protective effect and the underlying mechanism of action of Cuscuta chinensis extract (CCE) against glucocorticoid-induced osteoporosis in vivo. Sprague-Dawley rats were randomly divided into four groups as follows: control group, osteoporosis group, and 2 CCE-treated osteoporosis groups (100 mg·kg-1·day-1). Blood samples and femur bones were collected for immunohistochemistry, biochemical, mRNA expression, and western blot analysis. HPLC analysis revealed that chlorogenic acid, quercetin, and hyperin were the major constituents of CCE. The results indicated that CCE increased bone length, bone weight, and bone mineral density and suppressed dexamethasone (DEX)-induced reduction in body weight. In addition, TRAP staining indicated that CCE reduced osteoclasts in DEX-induced osteoporosis rats. Mechanistically, CCE treatment alleviated the increase of bone resorption markers and the decline of osteogenic markers, which might be partially mediated by regulation of RANKL/OPG and RunX2 pathways. These results suggest that CCE showed promising effects in the protection against glucocorticoid-induced osteoporosis through protecting osteoblasts and suppressing osteoclastogenesis.
    [Abstract] [Full Text] [Related] [New Search]