These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. Author: Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T. Journal: J Biol Chem; 1988 Nov 15; 263(32):16942-53. PubMed ID: 3182823. Abstract: The mitochondrial isoform of creatine kinase (Mi-CK, EC 2.7.3.2) purified to homogeneity from chicken cardiac muscle by the mild and efficient technique described in this article was greater than or equal to 99.5% pure and consisted of greater than or equal to 95% of a distinct, octameric Mi-CK protein species, with a Mr of 364,000 +/- 30,000 and an apparent subunit Mr of 42,000. The remaining 5% were dimeric Mi-CK with an apparent Mr of 86,000 +/- 8,000. Octamerization was not due to covalent linkages or intermolecular disulfide bonding. Upon dilution into buffers of low ionic strength and alkaline pH, octameric Mi-CK slowly dissociated in a time-dependent manner (weeks-months) into dimeric Mi-CK. However, the time scale of dimerization was reduced to minutes by the addition to diluted Mi-CK octamers of a mixture of Mg2+, ADP, creatine and nitrate known to induce a transition-state analogue complex (Milner-White, E.J., and Watts, D. C. (1971) Biochem. J. 122, 727-740). The conversion was fully reversible, and octamers were reformed by simple concentrations of Mi-CK dimer solutions to greater than or equal to 1 mg/ml at near neutral pH and physiological salt concentrations in the absence of adenine nucleotide. After separation of the two Mi-CK species by gel filtration, electron microscopic analysis revealed uniform square-shaped particles with a central negative-stain-filled cavity in the octamer fractions and "banana-shaped" structures in the dimer fractions. Mi-CK was localized inside the mitochondria by immunogold labeling with polyclonal antibodies. A dynamic model of the octamer-dimer equilibrium of Mi-CK and the preferential association of the octameric Mi-CK form with the inner mitochondrial membrane is discussed in the context of regulation of Mi-CK activity, mitochondrial respiration, and the CP shuttle.[Abstract] [Full Text] [Related] [New Search]