These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Novel Mechanism of BAM8-22 Inhibiting Microglia Activation: Represses CX3CR1 Expression via Upregulating miR-184. Author: Wang A, Tie M, Guo D, Wu N, Yao S, Yan L, Zhao X. Journal: J Mol Neurosci; 2020 Apr; 70(4):550-558. PubMed ID: 31833017. Abstract: Bone cancer pain (BCP) is the most common type of pain in cancer patients, during which microglia cells were activated. A previous study showed BAM8-22 had the ability to alleviate BCP via inhibiting microglia activation while the mechanism was not clear. This study aims to investigate the specific mechanism of BAM8-22 inhibiting microglia activation. This study was mainly investigated in BCP mice or LPS-treated microglia BV-2 cells. The behavior tests of mice were performed at 0, 1, 2, 12, and 24 h after BAM8-22 treatment. The expression of miR-184 and CX3CR1 mRNAs was detected by quantitative RT-PCR. The expression of CX3CR1 protein and microglia activation marker, Iba-1, was measured by western blot analysis. The levels of TNF-α and IL-1β were detected by ELISA. Dual-luciferase assay was performed to verify the combination between miR-184 and CX3CR1. After BAM8-22 treatment, increased miR-184 level was observed in both BCP mice and LPS-treated BV-2 cells, with the downregulated expression of Iba-1 and inflammatory cytokines, namely the inhibition of microglia activation. The inhibition of miR-184 reversed the inhibitory effect of BAM8-22 on microglia activation. Further, in vitro studies showed that miR-184 bound to the 3'UTR of CX3CR1 and inhibited microglia activation via repressing CX3CR1 expression. What's more, the suppression of CX3CR1 expression eliminated the reversal effect of the miR-184 inhibitor on BAM8-22-induced microglia activation and decreased Iba-1 expression and pro-inflammatory cytokine secretion. In BCP models, miR-184 was upregulated by BAM8-22 and the elevated level of miR-184 bound to the 3'UTR region of CX3CR1 and repressed CX3CR1 expression, thus inhibiting the microglia activation, suggesting the potential application of miR-184/CX3CR1 for BCP treatment.[Abstract] [Full Text] [Related] [New Search]