These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Astragaloside IV attenuates sepsis-induced intestinal barrier dysfunction via suppressing RhoA/NLRP3 inflammasome signaling. Author: Xie S, Yang T, Wang Z, Li M, Ding L, Hu X, Geng L. Journal: Int Immunopharmacol; 2020 Jan; 78():106066. PubMed ID: 31835087. Abstract: Intestinal barrier dysfunction is a trigger for sepsis progression. NLRP3 inflammasome and RhoA contribute to sepsis and intestinal inflammation. The current study aimed to explore the effects of Astragaloside IV (AS-IV), a bioactive compound from Astragalus membranaceus, on sepsis-caused intestinal barrier dysfunction and whether NLRP3 inflammasome and RhoA are involved. Septic mice modeled by cecal ligation and puncture (CLP) operation were administered with 3 mg/kg AS-IV intravenously. AS-IV decreased mortality, cytokines release, I-FABP secretion, intestinal histological score and barrier permeability, and increased tight junction (TJ) expression in intestine in CLP model. Also, in Caco-2 cells subjected to lipopolysaccharide (LPS), 200 μg/mL AS-IV co-incubation reduced cytokines levels and enhanced in vitro gut barrier function without cytotoxicity. Subsequently, NLRP3 inflammasome and RhoA were highly activated both in intestinal tissue in vivo and in Caco-2 cells in vitro, both of which were significantly suppressed by AS-IV treatment. In addition, the benefits of AS-IV on Caco-2 monolayer barrier were largely counteracted by RhoA agonist CN03 and NLRP3 gene overexpression, respectively. Furthermore, LPS-induced NLRP3 inflammasome activation was abrogated by RhoA inhibitor C3 exoenzyme. However, NLRP3 knockdown by siRNA hardly affected RhoA activation in Caco-2 cells. These data suggest that AS-IV protects intestinal epithelium from sepsis-induced barrier dysfunction via inhibiting RhoA/NLRP3 inflammasome signal pathway.[Abstract] [Full Text] [Related] [New Search]