These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Author: Huang Y, Liao M, Yang Q, Shi S, Xiao J, Cao H. Journal: Pestic Biochem Physiol; 2020 Jan; 162():15-22. PubMed ID: 31836049. Abstract: Terpinen-4-ol showed highly insecticidal activity to stored-grain pest Sitophilus zeamais, and cytochrome P450s were strongly induced in response to terpinen-4-ol fumigation. Understanding of the function of P450 enzyme system in the susceptibility to terpinen-4-ol in S. zeamais will benefit the potential application of terpinen-4-ol in controlling stored-grain pests. In the present study, the synergist piperonyl butoxide increased the toxicity of terpinen-4-ol to S. zeamais, with a synergism ratio of 3.5-fold. Two isoforms of NADPH-cytochrome P450 reductase (SzCPR) were identified, with the difference at the N-terminal. SzCPR contained an N-terminal membrane anchor, FMN, FAD, and NADP binding domains. Expression levels of SzCPR were upregulated by tea tree oil (TTO) and its main constituent terpinen-4-ol under different concentrations and time periods. RNAi was generated for S. zeamais by feeding adults dsRNA and the knockdown of SzCPR increased the susceptibility of S. zeamais to terpinen-4-ol, with higher mortality of adults than control under terpinen-4-ol fumigation. Further RNAi analysis showed that P450 gene CYP6MS1 mediated the susceptibility of S. zeamais to terpinen-4-ol. These results revealed that cytochrome P450 enzyme system, especially CYP6MS1 participated in the susceptibility of S. zeamais to terpinen-4-ol. The findings provided a foundation to clarify the metabolic mechanisms of terpinen-4-ol in stored-grain pests.[Abstract] [Full Text] [Related] [New Search]