These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biosynthesis of poly-γ-glutamic acid in Escherichia coli by heterologous expression of pgsBCAE operon from Bacillus.
    Author: Liu CL, Dong HG, Xue K, Yang W, Liu P, Cai D, Liu X, Yang Y, Bai Z.
    Journal: J Appl Microbiol; 2020 May; 128(5):1390-1399. PubMed ID: 31837088.
    Abstract:
    AIMS: Poly-γ-glutamic acid (γ-PGA) is an excellent water-soluble biosynthesis material. To confirm the rate-limiting steps of γ-PGA biosynthesis pathway, we introduced a heterologous Bacillus strain pathway and employed an enzyme-modulated dismemberment strategy in Escherichia coli. METHODS AND RESULTS: In this study, we heterologously introduced the γ-PGA biosynthesis pathway of two laboratory-preserved strains-Bacillus amyloliquefaciens FZB42 and Bacillus subtilis 168 into E. coli, and compared their γ-PGA production levels. Next, by changing the plasmid copy numbers and supplying sodium glutamate, we explored the effects of gene expression levels and concentrations of the substrate l-glutamic acid on γ-PGA production. We finally employed a two-plasmid induction system using an enzyme-modulated dismemberment of pgsBCAE operon to confirm the rate-limiting genes of the γ-PGA biosynthesis pathway. CONCLUSION: Through heterologously over-expressing the genes of the γ-PGA biosynthesis pathway and exploring gene expression levels, we produced 0·77 g l-1 γ-PGA in strain RSF-EBCAE(BS). We also confirmed that the rate-limiting genes of the γ-PGA biosynthesis pathway were pgsB and pgsC. SIGNIFICANCE AND IMPACT OF THE STUDY: This work is beneficial to increase γ-PGA production and study the mechanism of γ-PGA biosynthesis enzymes.
    [Abstract] [Full Text] [Related] [New Search]