These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway. Author: Dang X, Zhang R, Peng Z, Qin Y, Sun J, Niu Z, Pei H. Journal: Chem Biol Interact; 2020 Jan 25; 316():108922. PubMed ID: 31837296. Abstract: Homeodomain interacting protein kinase-2 (HIPK2) has emerged as a crucial stress-responsive kinase that plays a critical role in regulating cell survival and apoptosis. However, whether HIPK2 participates in regulating cardiomyocyte survival during myocardial ischemia/reperfusion injury remains unclear. Here, we investigated the regulatory effect of HIPK2 on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and its potential underlying molecular mechanism. We found that HIPK2 expression was induced in response to H/R exposure. HIPK2 depletion by small interfering RNA (siRNA)-mediated gene silencing significantly decreased the viability and exacerbated H/R-induced apoptosis and reactive oxygen species (ROS) production in cardiomyocytes. Comparatively, HIPK2 overexpression effectively rescued H/R-impaired viability and repressed H/R-induced apoptosis and ROS production in cardiomyocytes. HIPK2 overexpression significantly increased the nuclear expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and enhanced Nrf2-mediated transcriptional activity. Moreover, HIPK2 overexpression significantly increased the transcription of Nrf2/ARE target genes. Additionally, Nrf2 inhibition partially reversed the HIPK2-mediated protective effect. Overall, these results demonstrate that HIPK2 overexpression protects cardiomyocytes from H/R-induced injury by enhancing Nrf2/ARE antioxidant signaling, data that suggest HIPK2 is a potential target for cardioprotection.[Abstract] [Full Text] [Related] [New Search]