These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potential antibacterial and anti-halitosis activity of medicinal plants against oral bacteria.
    Author: Veloso DJ, Abrão F, Martins CHG, Bronzato JD, Gomes BPFA, Higino JS, Sampaio FC.
    Journal: Arch Oral Biol; 2020 Feb; 110():104585. PubMed ID: 31838294.
    Abstract:
    This study aimed to evaluate the in vitro activity of the crude extracts obtained from Caesalpinia ferrea Mart. (Jucá), Cinnamomum cassia B. (Cinnamon), Mallow sylvestris L. (Mallow), Punica granatum L. (Pomegranate), Rosmarinus officinalis L. (Rosemary), Aeolanthus suaveolens (Als.) Spreng. (Macassá), Sysygium aromaticum L. (Clove), and Tamarindus indica L. (Tamarind) against oral microorganisms (e.g., Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and Parvimonas micra) that produce volatile sulfur compounds (VSC). The pure extracts were placed in culture medium for the diffusion test in agar. The Minimum Inhibitory Concentration (MIC) was determined by the microdilution method, and microbial growth was assayed with resazurin. Total polyphenols in the extracts were measured by using the Prussian Blue Method. For the salivary sediment test, the sediments were exposed to the Jucá and Pomegranate extracts, which was followed by incubation and organoleptic measurements with a monitor (Halimeter®) at 1-, 2-, 4-, and 24 -h intervals. The diffusion test revealed mixed results for the extracts. When the zone of inhibition was present, it ranged from 1.6-10.3 mm. The Pomegranate extract was the only extract that inhibited all the evaluated microorganisms; the MIC values ranged from 50 to 400 μg/mL. The Pomegranate and Jucá extracts presented higher levels of polyphenols, 7.3 % and 3.9 %, respectively, and less VSC formation as compared to the negative control. In conclusion, the extracts display antimicrobial activity against the tested microorganisms. The investigated plants have the potential to reduce the main substances related to halitosis of oral origin.
    [Abstract] [Full Text] [Related] [New Search]