These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: α-Ketoglutarate Modulates Macrophage Polarization Through Regulation of PPARγ Transcription and mTORC1/p70S6K Pathway to Ameliorate ALI/ARDS.
    Author: Liu M, Chen Y, Wang S, Zhou H, Feng D, Wei J, Shi X, Wu L, Zhang P, Yang H, Lv X.
    Journal: Shock; 2020 Jan; 53(1):103-113. PubMed ID: 31841452.
    Abstract:
    As tissue-resident cells in the lung, alveolar macrophages display remarkable heterogeneity and play a crucial role in the development and control of septic acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Recent evidence suggests that α-ketoglutarate (α-KG) plays an important role in alternative activation of macrophage (M2) through metabolic and epigenetic reprogramming, and thus possesses anti-inflammatory properties. However, the underlying mechanisms of α-KG's effect on alveolar macrophage polarization and the potential effects of α-KG in ALI/ARDS remain unclear. Here, we examined the effects and mechanisms of α-KG on alveolar macrophage polarization, and investigated the possible effects of α-KG on lipopolysaccharide (LPS)-induced ALI/ARDS in a mouse model. We found that α-KG inhibited M1 macrophage polarization and promoted IL-4-induced M2 macrophage polarization in MH-S cells (a murine alveolar macrophage cell line). Further experiments showed that α-KG down-regulated the expression of M1-polarized marker genes and inhibited the activities of mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal protein S6 kinase (p70S6K) signaling pathway in M1-polarized MH-S cells. Moreover, our results showed that α-KG promoted IL-4-induced M2 polarization of MH-S cells by augmenting nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ) and increasing expression of relevant fatty acid metabolic genes. Finally, using an LPS-induced ALI/ARDS mouse model, we found that α-KG ameliorated the LPS-induced inflammation and lung pathological damage, as well as α-KG pretreated mice had better clinical scores compared with the LPS group. These findings reveal new mechanisms of α-KG in regulating macrophage polarization which may provide novel strategies for the prevention and treatment of inflammatory diseases, including sepsis and septic ALI/ARDS.
    [Abstract] [Full Text] [Related] [New Search]