These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti3C2Tx MXene.
    Author: Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R, Wang Y, Liu C.
    Journal: ACS Appl Mater Interfaces; 2020 Jan 15; 12(2):2644-2654. PubMed ID: 31854182.
    Abstract:
    Two-dimensional Ti3C2Tx MXene-based hybrids-anchored magnetic metal nanoparticles show a huge potential application as effective wave absorbers due to the synergistic electromagnetic (EM) loss effect. In this work, uniform and size-controllable nickel, cobalt, or nickel-cobalt alloy nanoparticles were in situ grown on the surface of MXene via a facile and moderate co-solvothermal method for the first time. As an example, a nickel nanoparticles-anchored MXene (Ni@MXene) hybrid was homodispersed into dielectric polyvinylidene fluoride to develop its EM wave-absorbing capacity to a great extent. As expected, the results showed strong reflection loss (RLmin = -52.6 dB at 8.4 GHz), broad effective absorption bandwidth (EAB = 3.7 GHz including 71% of X-band), low loading (10 wt % Ni@MXene), and thin thickness (3.0 mm). By adjusting the sample thickness, EAB can cover completely the whole X-band with a maximum of 6.1 GHz, showing a huge potential of Ni@MXene hybrid applying as aircraft stealth coating. The mechanism analyses revealed that the excellent impedance matching, magnetocoupling effect, conductance, magnetic loss, and multiple scatterings contribute to the splendid EM wave-absorbing performance of the Ni@MXene hybrid. Considering the excellent overall performance, the Ni@MXene hybrid was identified as a promising candidate for EM wave absorption.
    [Abstract] [Full Text] [Related] [New Search]