These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of nuclear proteins with muscle-specific regulatory sequences of the human cardiac alpha-actin promoter.
    Author: Gustafson TA, Miwa T, Boxer LM, Kedes L.
    Journal: Mol Cell Biol; 1988 Oct; 8(10):4110-9. PubMed ID: 3185542.
    Abstract:
    The human cardiac alpha-actin promoter is involved in the muscle-specific transcriptional regulation of the gene. In this study, we utilized gel mobility shift, methylation interference, and DNase I protection assays to examine protein factor interaction with the promoter in vitro. All assays demonstrated specific interaction of nuclear factors with a region of the promoter encompassed by nucleotides -93 to -113 base pairs from the transcriptional start site. This region contains a CC(A + T-rich)6GG element, termed a CArG box, which has previously been implicated in the muscle-specific transcriptional regulation of the gene by functional assays. Although the gene is only expressed in muscle cells, identical binding activity was present in nuclear extracts of all cell types examined, including those of muscle (C2, L8, and L6 cells) and nonmuscle (HeLa, NIH 3T3, HuT12, and L cells) origin. Furthermore, methylation interference assays showed that identical nucleotides interacted with factors isolated from C2 and HeLa cells. Competition studies showed that the CArG-binding factor, designated as CBF, also interacts with the c-fos serum responsive element, which contains a CArG element, but not with the simian virus 40 enhancer and early promoter. Thus, a region of the human cardiac alpha-actin promoter known to be functionally involved in muscle-specific regulation of the gene appears to interact in vitro, and in an identical manner, with a factor(s) which is neither muscle nor gene specific, suggesting a more complex mode of regulation than previously envisioned.
    [Abstract] [Full Text] [Related] [New Search]