These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Small angle X-ray scattering based structure, modeling and molecular dynamics analyses of family 43 glycoside hydrolase α-L-arabinofuranosidase from Clostridium thermocellum. Author: Sharma K, Fontes CMGA, Najmudin S, Goyal A. Journal: J Biomol Struct Dyn; 2021 Jan; 39(1):209-218. PubMed ID: 31856699. Abstract: Enzymes that participate in the hydrolysis of complex carbohydrates display a modular architecture, although the significance of enzyme modularity to flexibility and catalytic efficacy is not fully understood. α-L-arabinofuranosidase from Clostridium thermocellum (CtAraf43) catalyzes the release of α-1,2-, α-1,3-, or α-1,5- linked L-arabinose from arabinose decorated polysaccharides. CtAraf43 comprises an N-terminal catalytic domain (CtAbf43A) connected with two family 6 carbohydrate-binding modules (CBMs), termed as CtCBM6A and CtCBM6B, through flexible linker peptides. Here, we modeled the structure of CtAraf43 revealing that the module, CtAbf43A displays a 5-fold β-propeller fold and the CBMs the typical jellyroll type β-sandwich folds. Ramachandran plot showed 98.5% residues in the favored region and 1.5% residues in the disallowed region. Molecular dynamics simulation analysis of CtAraf43 revealed significant flexibility that is more expressive in the C-terminal CtCBM6B module in terms of structure and orientation. Small angle X-ray scattering analysis of CtAraf43 revealed its elongated structure. CtAraf43 at 1.2mg/mL demonstrated the monomeric nature and a multi-modular shaped molecular envelope in solution with a Dmax of 12nm. However, at 4.7mg/mL, CtAraf43 displayed a dimeric structure and elongated molecular envelope. Kratky plot analysis revealed the folded state of CtAraf43 with limited flexibility at both concentrations. The data revealed higher flexibility at the C-terminal of CtAraf43 suggesting a coordinated action of the N-terminal catalytic module CtAbf43A and the internal CtCBM6A.AbbreviationCBMsCarbohydrate Binding ModulesCtAraf43α-L-arabinofuranosidaseGHsGlycoside HydrolasesMDMolecular DynamicsRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationSAXSSmall angle X-ray scatteringCommunicated by Ramaswamy H. Sarma.[Abstract] [Full Text] [Related] [New Search]