These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bismuth-Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries.
    Author: Xiong P, Wu J, Zhou M, Xu Y.
    Journal: ACS Nano; 2020 Jan 28; 14(1):1018-1026. PubMed ID: 31860268.
    Abstract:
    Antimony (Sb)-based anode materials have recently aroused great attention in potassium-ion batteries (KIBs), because of their high theoretical capacities and suitable potassium inserting potentials. Nevertheless, because of large volumetric expansion and severe pulverization during potassiation/depotassiation, the performance of Sb-based anode materials is poor in KIBs. Herein, a composite nanosheet with bismuth-antimony alloy nanoparticles embedded in a porous carbon matrix (BiSb@C) is fabricated by a facile freeze-drying and pyrolysis method. The introduction of carbon and bismuth effectively suppress the stress/strain originated from the volume change during charge/discharge process. Excellent electrochemical performance is achieved as a KIB anode, which delivers a high reversible capacity of 320 mA h g-1 after 600 cycles at 500 mA g-1. In addition, full KIBs by coupling with Prussian Blue cathode deliver a high capacity of 396 mA h g-1 and maintain 360 mA h g-1 after 70 cycles. Importantly, the operando X-ray diffraction investigation reveals a reversible potassiation/depotassiation reaction mechanism of (Bi,Sb) ↔ K(Bi,Sb) ↔ K3(Bi,Sb) for the BiSb@C composite. Our findings not only propose a reasonable design of high-performance alloy-based anodes in KIBs but also promote the practical use of KIBs in large-scale energy storage.
    [Abstract] [Full Text] [Related] [New Search]