These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hybrid planning techniques for hypofractionated whole-breast irradiation using flattening filter-free beams.
    Author: Balaji K, Balaji Subramanian S, Sathiya K, Thirunavukarasu M, Anu Radha C, Ramasubramanian V.
    Journal: Strahlenther Onkol; 2020 Apr; 196(4):376-385. PubMed ID: 31863154.
    Abstract:
    OBJECTIVE: The aim of this study was to assess the feasibility of flattening filter-free (FFF) photon beams in hybrid intensity-modulated radiation therapy (H-IMRT) and hybrid volumetric modulated arc therapy (H-VMAT) for left-sided whole-breast radiation therapy with a boost volume (RT) using a hypofractionated dose regimen. PATIENTS AND METHODS: RT plans of 25 patients with left-sided early-stage breast cancer were created with H‑IMRT and H‑VMAT techniques under breath-hold conditions using 6‑MV FFF beams. In hybrid techniques, three-dimensional conformal radiotherapy (3DCRT) plans were kept as base-dose plans for the VMAT and IMRT plans. In addition, H‑IMRT in step-and-shoot mode was also calculated to assess its achievability with FFF beams. RESULTS: All hybrid plans achieved the expected target coverage. H‑VMAT showed better coverage and homogeneity index results for the boost target (p < 0.002), while H‑IMRT presented better results for the whole-breast target (p < 0.001). Mean doses to normal tissues were comparable between both plans, while H‑IMRT reduced the low-dose levels to heart and ipsilateral lung (p < 0.05). H‑VMAT revealed significantly better results with regard to monitor units (MU) and treatment time (p < 0.001). CONCLUSION: The 6‑MV FFF beam technique is feasible for large-field 3DCRT-based hybrid planning in whole-breast and boost planning target volume irradiation. For breath-hold patients, the H‑VMAT plan is superior to H‑IMRT for hypofractionated dose regimens, with reduced MU and treatment delivery time.
    [Abstract] [Full Text] [Related] [New Search]