These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization the role of GacA-dependent small RNAs and RsmA family proteins on 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24.
    Author: Zhang Y, Zhang B, Wu X, Zhang LQ.
    Journal: Microbiol Res; 2020 Mar; 233():126391. PubMed ID: 31865097.
    Abstract:
    Pseudomonas fluorescens 2P24 is a plant-beneficial rhizobacteria that controls many root diseases caused by soil-borne pathogens, and the production of the antibiotic compound 2,4-diacetylphloroglucinol (2,4-DAPG) is essential for its biocontrol ability. In the present study, we investigated the regulatory mechanism acting on the production of 2,4-DAPG by the GacA-dependent small non-coding RNAs (sRNAs) and RsmA/E proteins in strain 2P24. Our results showed that the GacS-GacA system regulates the expression of the phlACBD locus, which is responsible for 2,4-DAPG production, by inducing the expression of rsmX, rsmX1, rsmY, and rsmZ. A novel GacA-regulated sRNA, RgsA, was found to negatively regulate 2,4-DAPG production. Activation of the phlACBD locus by the GacS-GacA system is mediated through RsmA and RsmE proteins (but not RsmI), which inhibit phlACBD translation by binding to the putative RsmA/E recognition element in the phlACBD leader. Taken together, our results suggested that in P. fluorescens 2P24, the GacS-GacA system controls the cellular 2,4-DAPG levels in the cell by fine-tuning the function of sRNAs in P. fluorescens.
    [Abstract] [Full Text] [Related] [New Search]