These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wheel running for 26 weeks is associated with sustained vascular plasticity in the rat motor cortex. Author: Stevenson ME, Kay JJM, Atry F, Wickstrom AT, Krueger JR, Pashaie RE, Swain RA. Journal: Behav Brain Res; 2020 Feb 17; 380():112447. PubMed ID: 31870777. Abstract: Vascular pathologies represent the leading causes of mortality worldwide. The nervous system has evolved mechanisms to compensate for the cerebral hypoxia caused by many of these conditions. Vessel dilation and growth of new vessels are two prominent responses to hypoxia, both of which play a critical role in maintaining cerebral homeostasis. One way to facilitate cerebrovascular plasticity, and develop neuroprotection against vascular pathologies, is through aerobic exercise. The present study explored the long-term consequences of aerobic exercise on vascular structure and function in the motor cortex. Rats were assigned to a sedentary condition or were provided access to running wheels for 26 weeks. Rats were then anesthetized, and angiograms were captured using spectral domain optical coherence tomography (SD-OCT) to explore cerebrovascular reactivity in response to altered oxygen and carbon dioxide status. Following this procedure, all rats were euthanized, and unbiased stereological quantification of blood vessel density was collected from sections of the primary motor cortex infused with India ink. Results demonstrated that chronic exercise increased capillary and arteriole surface area densities and enhanced arteriole reactivity in response to hypercapnia-hypoxia, as displayed by increased vasodilation within the motor cortex of exercised animals.[Abstract] [Full Text] [Related] [New Search]