These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling of a conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. Author: Nazir A, Le HTT, Min CW, Kasbe A, Kim J, Jin CS, Park CJ. Journal: Nanoscale; 2020 Jan 23; 12(3):1629-1642. PubMed ID: 31872835. Abstract: A composite of Si nanoparticles (SiNPs) and a two-dimensional (2D) porous conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) metal-organic framework (MOF), namely Si/Ni3(HITP)2, is suggested as a potential anode material for Li-ion batteries (LIBs). The Ni3(HITP)2 MOF with a carbon backbone and evenly dispersed Ni and N heteroatoms showed high potential for mitigating the volume expansion of Si and enhancing the electronic conductivity as well as Li storage ability of the Si/Ni3(HITP)2 anode. The Si/Ni3(HITP)2 electrode delivered a reversible capacity of 2657 mA h g-1 after 100 cycles of discharge-charge at a rate of 0.1C. Moreover, at a high rate of 1C, the Si/Ni3(HITP)2 electrode maintained a reversible capacity of 876 mA h g-1 even after 1000 cycles. The different rate capacities were 1655, 1129, and 721 mA h g-1 at 5C, 10C and 20C, respectively. The excellent electrochemical performance of the Si/Ni3(HITP)2 electrode in terms of improved cycle life and rate capability results from the open channels of the MOF network, which are beneficial for the movement of Li+ ions through the electrolyte to the electrode and the mitigation of stress by volume expansion of Si. We believe that the coupling of conductive Ni3(HITP)2 with Si is a potential way to make an anode for high-performance LIBs.[Abstract] [Full Text] [Related] [New Search]