These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y. Author: Taghizadeh T, Talebian-Kiakalaieh A, Jahandar H, Amin M, Tarighi S, Faramarzi MA. Journal: J Hazard Mater; 2020 Mar 15; 386():121950. PubMed ID: 31881496. Abstract: Bisphenol A (BPA) is an environmental pollutant with adverse effects on different ecosystems. In this study, immobilized laccase enzymes onto inorganic supports were used to remove BPA. Laccase was successfully immobilized on sodium zeolite Y (NaY) and its modified desilicated (DSY) and dealuminated (DAY) forms. NaY-based supports were instrumentally characterized. The immobilized laccase on NaY (laccase@NaY), desilicated (laccase@DSY), and dealuminated (laccase@DAY) forms showed significant improvement on immobilization yield (IY%) and efficiency (IE%). Laccase@DSY and laccase@NaY showed IY% = 73.18 ± 3.33 % and 46.23 ± 1.81 % and IE% = 94.50 ± 1.86 %, and 74.39 ± 1.41 %, respectively, whereas IY% and IE% for laccase@DAY were achieved as 81.12 ± 1.32 % and 98.56 ± 2.93 %, respectively. The supports also increased the enzyme characteristics such as pH-temperature range, catalytic stability, and reusability. Km values were 0.73 ± 0.05, 0.26 ± 0.09, 0.31 ± 0.5, and 1.01 ± 0.03 mM for laccase@NaY, laccase@DAY, laccase@DSY, and the free enzyme, respectively. The enzyme demonstrated higher biodegradation ability of bisphenol A upon immobilization on the supports compared to that of the soluble enzyme. A bio-removal yield of 86.7 % was obtained considering three parameters including amount of laccase@DAY (8 U mg-1), concentration of BPA (0.5 mM), and treatment time (1 h) based on response surface methodology (RSM). Biodegradation metabolites (49 ± 5.8 %) and unconverted BPA (14 ± 5.2 %) were analyzed by gas chromatography-mass spectrometry.[Abstract] [Full Text] [Related] [New Search]