These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don.
    Author: Nabaei M, Amooaghaie R.
    Journal: Environ Sci Pollut Res Int; 2020 Mar; 27(7):6981-6994. PubMed ID: 31883077.
    Abstract:
    In this study, a pot experiment was performed to evaluate the effects of foliar spray with sodium nitroprusside (200 μM SNP) and melatonin (100 μM) singly and in combination on tolerance and accumulation of cadmium (Cd) in Catharanthus roseus (L.) G. Don plants exposed to different levels of cadmium (0, 50, 100, and 200 mg Cd kg-1 soil). The results showed that 50 mg kg-1 Cd had no significant effect on the fresh and dry weight of roots and shoots and content of chlorophyll (Chl) a and b, but the higher levels of Cd (100 and 200 mg kg-1) significantly reduced these attributes and induced an increase in the level of leaf electrolyte leakage and disrupted nutrient homeostasis. The activities of catalase (CAT) and peroxidase (POD) in leaves were increased under lower Cd concentrations (50 and 100 mg kg-1) but decreased under 200 mg kg-1 Cd. However, foliar spray with melatonin and/or SNP increased shoot biomass and the content of Chl a and b, augmented activities of POD and CAT, lowered electrolyte leakage (EL), and improved essential cations homeostasis in leaves. Cadmium content in shoots of C. roseus was less than roots and TF (transfer factor) was < 1. Interestingly, foliar spray with SNP and/or melatonin increased Cd accumulation and bioconcentration factor (BCF) in both roots and shoots and elevated the Cd transport from roots to shoot, as TF values increased in these treatments. The co-application of melatonin and SNP further than their separate usage augmented Cd tolerance through increasing activities of antioxidant enzymes and regulating mineral homeostasis in C. roseus. Furthermore, co-treatment of SNP and melatonin increased Cd phytoremediation efficiency in C. roseus through increasing biomass and elevating uptake and translocation of Cd from root to shoot.
    [Abstract] [Full Text] [Related] [New Search]