These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Melatonin Attenuates β-Glycerophosphate-Induced Calcification of Vascular Smooth Muscle Cells via a Wnt1/β-Catenin Signaling Pathway. Author: Chen WR, Zhou YJ, Yang JQ, Liu F, Zhao YX, Sha Y. Journal: Biomed Res Int; 2019; 2019():3139496. PubMed ID: 31886199. Abstract: BACKGROUND: Melatonin has been demonstrated to protect against calcification in cyclosporine nephrotoxicity. The wingless-type MMTV integration site family member 1 (Wnt1)/β-catenin pathway is associated with cardiovascular calcification. This study aimed to explore whether melatonin could attenuate VSMC calcification through regulating the Wnt1/β-catenin signaling pathway. METHODS: The effects of melatonin on vascular calcification were investigated in vascular smooth muscle cells (VSMCs). Calcium deposits were visualized by Alizarin Red Staining. Calcium content and alkaline phosphatase (ALP) activity were used to evaluate osteogenic differentiation. Western blots were used to measure the expression of runt-related transcription factor 2 (Runx2), α-smooth muscle actin (α-SMA), and cleaved caspase-3. RESULTS: Melatonin markedly ameliorated calcium deposition and ALP activity. Runx2 and cleaved caspase-3 were found to be reduced and α-SMA was found to be increased by melatonin, together with a decrease in apoptosis. Immunofluorescence assay revealed a lower Runx2 protein level in the melatonin group. Melatonin treatment significantly decreased the expression of Wnt1 and β-catenin. Treatment with lithium chloride or transglutaminase 2 abrogated the protective effects of melatonin. CONCLUSION: Melatonin can attenuate β-GP-induced VSMC calcification through the suppression of Wnt1/β-catenin system.[Abstract] [Full Text] [Related] [New Search]