These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A single cell droplet microfluidic system for quantitative determination of food-borne pathogens.
    Author: An X, Zuo P, Ye BC.
    Journal: Talanta; 2020 Mar 01; 209():120571. PubMed ID: 31892085.
    Abstract:
    Single-cell detection methods are already of great significance for many bioanalysis applications, and droplet microfluidics technology is understood as particularly a powerful tool. Salmonella infection is a major hygienic problem worldwide that causes major public health and economic damage, and preventing Salmonella outbreaks requires detection food-borne detection methods that are rapid, portable, and reliable, ideally without the need for complicated pre-treatment protocol steps. Herein, we present a single-cell-level analysis method based on droplet microfluidics that can sensitively and rapidly detect Salmonella directly from food samples. Specifically, this method achieves single-cell encapsulation of Salmonella in droplets of a growth medium with resazurin that enables fluorescence-based detection of pathogens within 5 h. The ratio of positive droplets in a Poisson Distribution is used for quantitation, and the detection limit of our system determined to be 50 CFU/mL, a value lower than conventional analytical methods for assessing Salmonella contamination. Our experimental results demonstrate the precise and highly sensitive performance of a single-cell-precision, droplet-based microfluidic chip analytical method for monitoring pathogenic bacteria in food. Beyond our example case of Salmonella detection from milk samples, our work lays the foundation for a new generation of microfluidics-based analytical technologies for both public health and food safety applications which can undoubtedly benefit from increases in the sensitivity and rapidity of food-borne pathogen detection.
    [Abstract] [Full Text] [Related] [New Search]