These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Author: Shreya D, Jinal HN, Kartik VP, Amaresan N. Journal: Arch Microbiol; 2020 May; 202(4):887-894. PubMed ID: 31893290. Abstract: In this study, chromium (Cr)-tolerant bacteria were test for their efficiency in alleviating Cr stress in Cicer arietinum plants. On the basis of 16S rRNA gene analysis, the isolates were identified belonging to genus Stenotrophomonas maltophilia, Bacillus thuringiensis B. cereus, and B. subtilis. The strains produced a considerable amount of indole-3-acetic acid in a medium supplemented with tryptophan. The strains also showed siderophore production (S2VWR5 and S3VKR17), phosphorus production (S1VKR11, S3VKR2, S3VKR16, and S2VWR5), and potassium solubilization (S3VKR2, S2VWR5, and S3VKR17). Furthermore, the strains were evaluated in pot experiments to assess the growth promotion of C. arietinum in the presence of chromium salts. Bacterization improved higher root and shoot length considerably to 6.25%-60.41% and 11.3%-59.6% over the control. The plants also showed increase in their fresh weight and dry weight in response to inoculation with Cr-tolerant strains. The accumulation of Cr was higher in roots compared to shoots in both control and inoculated plants, indicating phytostabilization of Cr by C. arietinum. However, phytostabilization was found to be improved manifold in inoculated plants. Apart from the plant attributes, the amendment of soil with Cr and Cr-tolerant bacteria significantly increased the content of total chlorophyll and carotenoids, suggesting the inoculant's role in protecting plants from deleterious effects. This work suggests that the combined activity of Cr-tolerant and plant growth-promoting (PGP) properties of the tested strains could be exploited for bioremediation of Cr and to enhance the C. arietinum cultivation in Cr-contaminated soils.[Abstract] [Full Text] [Related] [New Search]