These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus-Infected Burn Wound in Mice. Author: Chhibber T, Gondil VS, Sinha VR. Journal: AAPS PharmSciTech; 2020 Jan 02; 21(2):43. PubMed ID: 31897806. Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) is considered a common colonizer of burn wound and accounts for high morbidity and mortality all across the globe. Systemic antibiotic therapy which is generally prescribed for these patients has a number of limitations. These include high drug dose, toxicity, and chances of development of drug resistance. However, local delivery of drug not only addresses these limitations but also provides better efficacy at the site of infection. In the present study, hydrogel preparations were developed for the topical delivery of moxifloxacin for the treatment of S. aureus-infected burn wound. Moxifloxacin was characterized by UV, FTIR, DSC, hot-stage microscopy, NMR, and HPLC and loaded into conventional and Boswellia-containing novel gels. Gels were characterized by visual examination, pH, UV spectroscopy, and release assays. In vivo studies showed that both gels were effective in eradicating the bacteria completely from the wound site when treatment was started during the early stage of infection. On the contrary, delayed treatment of planktonic and biofilm cells with novel gel showed better efficacy as compared with conventional gel in S. aureus-infected burn wound. Histopathological analysis also showed better skin healing efficacy of novel gel than conventional gel. Our results show that moxifloxacin can be efficiently used topically in the management of burn wound infections along with other antibacterial agents. Since biofilm-mediated infections are on the rise especially in chronic bacterial disease, therefore, a preparation containing antibiofilm agent-like Boswellia as one of the excipients would be more meaningful.[Abstract] [Full Text] [Related] [New Search]