These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochar-induced immobilization and transformation of silver-nanoparticles affect growth, intracellular-radicles generation and nutrients assimilation by reducing oxidative stress in maize. Author: Abbas Q, Yousaf B, Ullah H, Ali MU, Zia-Ur-Rehman M, Rizwan M, Rinklebe J. Journal: J Hazard Mater; 2020 May 15; 390():121976. PubMed ID: 31899028. Abstract: Silver nanoparticles (AgNPs) are used in a wide range of consumer products inevitably releases in massive quantities in the natural environment, posing a potential thread to ecosystem-safety and plant health. Here, the impact of AgNPs (100-1000 mg L-1) without and with biochar (@2 % w/v) amendment on maize plants was assessed in hydroponics exposure medium. AgNPs exposure to plants induced dose-dependent phytotoxicity by suppressing plant growth, disturbing photosynthesis and gas exchange traits and alteration in macro- and micronutrients assimilation. At the same time, AgNPs with addition of biochar alleviated the phyto-toxic effects of AgNPs through approximately 4-8 times reduction in uptake and tissue accumulation of Ag. Moreover, activities of antioxidant enzymes in AgNPs + biochar treated plants indicated the lower oxidative stress. Electron paramagnetic resonance (EPR) spectroscopy confirmed that superoxide (O2-) radical was the dominant reactive oxygen species. Fourier-transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) results revealed that biochar surface carboxyl and sulfur functional groups were involved in complexation process with NPs, which inhibited the oxidative dissolution and release of Ag+ ions besides of biochar space shield effect. Thus, the interaction of biochar with AgNPs immobilizes these NPs and can effectively reduce their bioavailability in the environmental matrix.[Abstract] [Full Text] [Related] [New Search]