These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impacts of climate change, population growth, and urbanization on future population exposure to long-term temperature change during the warm season in China.
    Author: Zhang W, Li Y, Li Z, Wei X, Ren T, Liu J, Zhu Y.
    Journal: Environ Sci Pollut Res Int; 2020 Mar; 27(8):8481-8491. PubMed ID: 31902079.
    Abstract:
    Climate change is anticipated to raise overall temperatures in the twenty-first century and is likely to intensify population exposure to heat during the warm season and, as a result, increase the risk of heat-related illnesses and deaths. While earlier studies of heat exposure and related health impacts generally focused on the acute effects of short-term exposure indicated by high daily temperature or several days of very hot weather, recent research has suggested that small changes in seasonal average temperature over a long period of time is likely to pose significant health risk as well. Using downscaled climate projections under three Representative Concentration Pathways emission scenarios, high-spatial-resolution population data, and the latest population projections by the United Nations, we aim at projecting future changes in long-term population exposure to summer heat across China in the mid- and late-twenty-first century resulting from global climate change. As the impacts of population growth are often overlooked in projecting future changes in heat exposure, we estimated changes in population-weighted average temperature in the warmest quarter over two future 20-year time periods and compared them with changes in temperature only. Our analysis shows that, nationally, population-weighted average temperature in the warmest quarter is projected to increase by 2.2 °C relative to the current situation in the 2050s and by 2.5 °C in the 2070s, as the result of climate change and population growth. Despite the foreseeable population stabilization in China, changes in population-weighted temperature are projected to be higher than changes in temperature itself for the majority of the 33 provinces (ranging from 0.02 °C to 1.27 °C, or 1% to 126% higher in the 2050s and from 0.02 °C to 1.16 °C, or 1% to 73% higher in the 2070s), with the largest differences mainly occurring in Western China. The impact of urbanization is projected to be relatively insignificant. Our findings provide evidence of possible underestimation of future changes in long-term exposure to summer heat if the effect of population growth is not factored in.
    [Abstract] [Full Text] [Related] [New Search]