These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancement of DNA damage in mammalian cells upon bioreduction of the nitroimidazole-aziridines RSU-1069 and RSU-1131.
    Author: Jenner TJ, Sapora O, O'Neill P, Fielden EM.
    Journal: Biochem Pharmacol; 1988 Oct 15; 37(20):3837-42. PubMed ID: 3190731.
    Abstract:
    The induction of DNA double-(dsb) and single-(ssb) strand breaks by RSU-1069, RSU-1131 and misonidazole in V79 mammalian cells has been investigated using sedimentation in isokinetic sucrose gradients after incubation for various times (1-3 hr) at 310 K under both hypoxic and aerobic conditions. Double strand breaks are produced by RSU-1069 and RSU-1131 predominantly under hypoxic conditions. Comparison of the cellular DNA damage induced by these agents leads to the following facts: (1) the yield of ssb induced by these agents is substantially increased under hypoxia, (2) RSU-1069 and RSU-1131 are much more effective than misonidazole, on a concentration basis, at causing strand breakage both under hypoxic and aerobic conditions; and (3) RSU-1069 is more efficient on a concentration basis than RSU-1131 at inducing both ssb and dsb under both conditions. From these findings and molecular studies it is suggested that these 2-nitroimidazole aziridines act as monofunctional alkylating agents under aerobic conditions, a factor that governs their aerobic cytotoxicity. Under hypoxic conditions, it is suggested that the induction of dsb and crosslinks by these agents (bifunctional character) may play a major role in determining the ability of such agents to act as hypoxia-selective cytotoxins.
    [Abstract] [Full Text] [Related] [New Search]