These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rational Design of a Near-infrared Fluorescence Probe for Ca2+ Based on Phosphorus-substituted Rhodamines Utilizing Photoinduced Electron Transfer. Author: Takahashi S, Hanaoka K, Okubo Y, Echizen H, Ikeno T, Komatsu T, Ueno T, Hirose K, Iino M, Nagano T, Urano Y. Journal: Chem Asian J; 2020 Feb 17; 15(4):524-530. PubMed ID: 31909880. Abstract: Fluorescence imaging in the near-infrared (NIR) region (650-900 nm) is useful for bioimaging because background autofluorescence is low and tissue penetration is high in this range. In addition, NIR fluorescence is useful as a complementary color window to green and red for multicolor imaging. Here, we compared the photoinduced electron transfer (PeT)-mediated fluorescence quenching of silicon- and phosphorus-substituted rhodamines (SiRs and PRs) in order to guide the development of improved far-red to NIR fluorescent dyes. The results of density functional theory calculations and photophysical evaluation of a series of newly synthesized PRs confirmed that the fluorescence of PRs was more susceptible than that of SiRs to quenching via PeT. Based on this, we designed and synthesized a NIR fluorescence probe for Ca2+ , CaPR-1, and its membrane-permeable acetoxymethyl derivative, CaPR-1 AM, which is distributed to the cytosol, in marked contrast to our previously reported Ca2+ far-red to NIR fluorescence probe based on the SiR scaffold, CaSiR-1 AM, which is mainly localized in lysosomes as well as cytosol in living cells. CaPR-1 showed longer-wavelength absorption and emission (up to 712 nm) than CaSiR-1. The new probe was able to image Ca2+ at dendrites and spines in brain slices, and should be a useful tool in neuroscience research.[Abstract] [Full Text] [Related] [New Search]