These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Curcumin Protects against White Matter Injury through NF-κB and Nrf2 Cross Talk.
    Author: Daverey A, Agrawal SK.
    Journal: J Neurotrauma; 2020 May 15; 37(10):1255-1265. PubMed ID: 31914858.
    Abstract:
    Inflammation and oxidative stress play a central role in the pathogenesis of white matter injury (WMI). Curcumin (Cur), a polyphenolic compound, exhibits anti-inflammatory and anti-oxidant effects on several conditions. The objective of this study was to investigate neuroprotective effects of Cur on WMI and explore its underlying mechanisms of action. Sprague-Dawley rats were subjected to the removal of white matter from the dorsal column of the spinal cord. Dorsal columns were randomly divided into three groups: Sham (Ringer's solution bubbled with 95% O2 and 5% CO2), hypoxia (Hyp; Ringer's solution bubbled with 95% N2 and 5% CO2 for 1 h), and Cur-treated (Hyp+Cur; Ringer's solution bubbled with 95% N2 and 5% CO2 for 1 h in the presence of 50 μM Cur). For NF-κB inhibition experiments, dorsal columns were incubated with 50 μM BAY 11-7082 (BAY) for 30 min in 95% O2 and 5% CO2 prior to 1-h incubation with 50 μM Cur in 95% N2 and 5% CO2. Our data show that Cur inhibited hypoxia-induced HIF1-α expression and tissue damage by demonstrating the improved morphology of astrocytes and remarkable reduction in vacuolation. Cur also inhibited the hypoxia-induced upregulation of glial fibrillary acidic protein (GFAP) and neurofilament-H (NF-H) after hypoxia and downregulated the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 1 (IL-1). Terminal dexynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-assay analysis showed that Cur effectively attenuated apoptosis in white matter. In addition, we demonstrated that Cur exerted its neuroprotective effect through cross talk between nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. In conclusion, our results indicate that treatment with Cur inhibited the hypoxia, inflammation and apoptosis associated with WMI. Further, the Nrf-2 pathway inhibits NF-κB activation by preventing IkB degradation and increasing HO-1 expression, which in turn reduces reactive oxygen species (ROS) and as a result NF-κB activation is suppressed. Similarly, NF-κB-mediated transcription reduces Nrf2 activation by reducing anti-oxidant response element (ARE) gene and free CREB binding protein by competing with Nrf2 for CBP thus inhibiting the Nrf-2 activation.
    [Abstract] [Full Text] [Related] [New Search]