These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of Zn(II) in calf intestinal alkaline phosphatase studied by the influence of chelating agents and chemical modification of histidine residues.
    Author: Ensinger HA, Pauly HE, Pfleiderer G, Stiefel T.
    Journal: Biochim Biophys Acta; 1978 Dec 08; 527(2):432-41. PubMed ID: 31915.
    Abstract:
    Alkaline phosphatase from calf intestine (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) is reversibly inhibited at pH 8.0 by incubation with chelating agents. Complete reactivation may be achieved by stoichiometric addition of Zn2+. Atomic absorption spectrometry was used to demonstrate the linear correlation between Zn2+ content and degree of reactivation. The reversibly inhibited enzyme contained 1 Zn2+ per subunit whereas 2 Zn2+ were found in both the reactivated and the native enzyme. At more alkaline pH-values, inactivation by chelating agents becomes irreversible; under such conditions the inactivated alkaline phosphatase still contains 1 Zn2+ per subunit. The conformational changes resulting from the loss of Zn2+ and leading to irreversible inactivation were investigated by optical rotatory dispersion, immunological techniques, and ultraviolet and fluorescence spectroscopy. Azocoupling of the alkaline phosphatase with diazonium-1-H-tetrazole and Zn2+ content measurement of azocoupled enzyme probes indicated that 2 histidine residues per subunit are involved in binding of the catalytically important Zn2+.
    [Abstract] [Full Text] [Related] [New Search]