These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Natural polyphenols prevent indomethacin-induced and diclofenac-induced Caco-2 cell death by reducing endoplasmic reticulum stress regardless of their direct reactive oxygen species scavenging capacity. Author: Boonyong C, Vardhanabhuti N, Jianmongkol S. Journal: J Pharm Pharmacol; 2020 Apr; 72(4):583-591. PubMed ID: 31922618. Abstract: OBJECTIVES: Indomethacin (INDO) and diclofenac (DIC) can induce intestinal cell death through induction of oxidative stress-mediated ER stress and mitochondrial dysfunction. This study investigated the cytoprotective potential of 11 polyphenols, namely caffeic acid (CAF), curcumin (CUR), epigallocatechin gallate (EGCG), gallic acid (GAL), hypophyllanthin (HYPO), naringenin (NAR), phyllanthin (PHY), piperine (PIP), quercetin (QUE), rutin (RUT) and silymarin (SLY) against these two NSAIDs in Caco-2 cells. METHODS: Reactive oxygen species (ROS) production was determined with fluorescence spectroscopy using specific probes (DHE, DCFH-DA, HPF). Cell viability and mitochondrial function were assessed by MTT and TMRE assays. The mRNA levels of Bax, Bcl-2 and CHOP proteins were determined by quantitative real-time polymerase chain reaction technique. KEY FINDINGS: All test polyphenols reduced NSAIDs-mediated ROS production. Only EGCG, QUE and RUT protected INDO-/DIC-induced cell death. These three polyphenols suppressed Bax/Bcl-2 mRNA ratio, CHOP up-regulation and MMP disruption in NSAIDs-treated cells. CAF and NAR prevented cytotoxicity from INDO, but not DIC. The cytoprotective effect of NAR, but not CAF, involved alteration of Bax/Bcl-2 mRNA ratio or MMP disruption, but not CHOP transcription. CONCLUSION: The cytoprotective activity of polyphenols against NSAIDs-induced toxicity stemmed from either suppression of CHOP-related ER and mitochondria stresses or other CHOP-independent pathways, but not from the intrinsic ROS scavenging capacity.[Abstract] [Full Text] [Related] [New Search]