These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced osteogenic differentiation of osteoblasts on CaTiO3 nanotube film. Author: Zhang Y, Wang K, Dong K, Cui N, Lu T, Han Y. Journal: Colloids Surf B Biointerfaces; 2020 Mar; 187():110773. PubMed ID: 31926789. Abstract: Improved implant-bone interface interaction for rapid formation of strong and long-lasting bond is significantly important in orthopedic clinics. Herein, Ca-doped TiO2 nanotube film (M-CaNTs) with enhanced adhesion strength was fabricated on titanium (Ti) surface by an anodization-hydrothermal treatment. Results showed that TiO2 nanotube film (M-NTs) fabricated by modified anodization was amorphous, exhibiting 100-nm diameter and 12-nm tube wall thickness. After hydrothermal treatment, the nanotubular structure of M-CaNTs kept integrated, but was volume-expanded, exhibiting a decreased diameter (∼ 60 nm) and an increased wall thickness (∼ 30 nm). The formation of M-CaNTs proceeded preferentially at the interior surfaces of the closely aligned nanotubes, involving an in situ dissolution-recrystallization process. Though the adhesion strength of M-CaNTs was weakened by the volume-expansion derived internal stress, it was still higher than that of the traditionally obtained one. In the in vitro investigations, the combination of nanotubular structure and Ca2+ could expectedly enhance the attachment, spreading and proliferation of MC3T3-E1 cells, as well as promote the expressions of bone-specific genes, intracellular proteins and ALP activity, which in turn accelerated collagen secretion and ECM mineralization. This work provides an attractive potential for the surface modification of Ti-based implants in clinical application.[Abstract] [Full Text] [Related] [New Search]