These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression of β-Lactam Resistance by Aspergillomarasmine A Is Influenced by both the Metallo-β-Lactamase Target and the Antibiotic Partner. Author: Rotondo CM, Sychantha D, Koteva K, Wright GD. Journal: Antimicrob Agents Chemother; 2020 Mar 24; 64(4):. PubMed ID: 31932375. Abstract: The rise of Gram-negative pathogens expressing metallo-β-lactamases (MBLs) is a growing concern, threatening the efficacy of β-lactam antibiotics, in particular, the carbapenems. There are no inhibitors of MBLs in current clinical use. Aspergillomarasmine A (AMA) is an MBL inhibitor isolated from Aspergillus versicolor with the ability to rescue meropenem activity in MBL-producing bacteria both in vitro and in vivo Here, we systematically explored the pairing of AMA with six β-lactam antibiotic partners against 19 MBLs from three subclasses (B1, B2, and B3). Cell-based assays performed with Escherichia coli and Klebsiella pneumoniae showed that bacteria producing NDM-1 and VIM-2 of subclass B1 were the most susceptible to AMA inhibition, whereas bacteria producing CphA2 and AIM-1 of subclasses B2 and B3, respectively, were the least sensitive. Intracellular antibiotic accumulation assays and in vitro enzyme assays demonstrated that the efficacy of AMA/β-lactam combinations did not correlate with outer membrane permeability or drug efflux. We determined that the optimal β-lactam partners for AMA are the carbapenem antibiotics and that the efficacy of AMA is linked to the Zn2+ affinity of specific MBLs.[Abstract] [Full Text] [Related] [New Search]