These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differentiation of Francisella tularensis Subspecies and Subtypes.
    Author: Larson MA, Sayood K, Bartling AM, Meyer JR, Starr C, Baldwin J, Dempsey MP.
    Journal: J Clin Microbiol; 2020 Mar 25; 58(4):. PubMed ID: 31941692.
    Abstract:
    The highly infectious and zoonotic pathogen Francisella tularensis is the etiologic agent of tularemia, a potentially fatal disease if untreated. Despite the high average nucleotide identity, which is >99.2% for the virulent subspecies and >98% for all four subspecies, including the opportunistic microbe Francisella tularensis subsp. novicida, there are considerable differences in genetic organization. These chromosomal disparities contribute to the substantial differences in virulence observed between the various F. tularensis subspecies and subtypes. The methods currently available to genotype F. tularensis cannot conclusively identify the associated subpopulation without using time-consuming testing or complex scoring matrices. To address this need, we developed both single and multiplex quantitative real-time PCR (qPCR) assays that can accurately detect and identify the hypervirulent F. tularensis subsp. tularensis subtype A.I, the virulent F. tularensis subsp. tularensis subtype A.II, F. tularensis subsp. holarctica (also referred to as type B), and F. tularensis subsp. mediasiatica, as well as opportunistic F. tularensis subsp. novicida from each other and near neighbors, such as Francisella philomiragia, Francisella persica, and Francisella-like endosymbionts found in ticks. These fluorescence-based singleplex and non-matrix scoring multiplex qPCR assays utilize a hydrolysis probe, providing sensitive and specific F. tularensis subspecies and subtype identification in a rapid manner. Furthermore, sequencing of the amplified F. tularensis targets provides clade confirmation and informative strain-specific details. Application of these qPCR- and sequencing-based detection assays will provide an improved capability for molecular typing and clinical diagnostics, as well as facilitate the accurate identification and differentiation of F. tularensis subpopulations during epidemiological investigations of tularemia source outbreaks.
    [Abstract] [Full Text] [Related] [New Search]