These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of anionic, neutral, and cationic polysaccharides on the in vitro digestibility of raw and gelatinized potato starch.
    Author: Sasaki T.
    Journal: J Sci Food Agric; 2020 Apr; 100(6):2435-2442. PubMed ID: 31943226.
    Abstract:
    BACKGROUND: Polysaccharides have been expected to have a suppressive effect on starch digestibility by blending. The objective of this study was to investigate the effects of anionic (xanthan gum), neutral (guar gum), and cationic (chitosan) polysaccharides on the in vitro digestibility of raw and gelatinized starch using six potato cultivars differing in phosphorus content. RESULTS: By comparing the starch digestibility between potato cultivars, a significant difference was observed for the raw starches, and 'Benimaru', which is a potato cultivar containing a higher proportion of short-chain amylopectin and the lowest phosphorus content in starch, showed a distinctly faster rate of starch hydrolysis. The added polysaccharides decreased the extent of digestion of both raw and gelatinized starches. No significant correlation between phosphorus content and the extent of starch digestion was observed in mixed systems, whereas significant correlations were noted between the extent of starch digestion and Rapid Visco Analyser parameters. The extent of raw and gelatinized starch digestion negatively correlated with pasting temperature, initial viscosity before heating, and peak viscosity (P < 0.01). CONCLUSION: The added polysaccharides were observed to decrease the starch digestibility, and their suppressive effects were mainly dependent on the increase of viscosity rather than chemical interactions. A combination of potato cultivar and type of polysaccharide was proved to be important for nutritional value of potato starch. © 2020 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]