These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Upper bound on angular momentum transport in Taylor-Couette flow. Author: Ding Z, Marensi E. Journal: Phys Rev E; 2019 Dec; 100(6-1):063109. PubMed ID: 31962523. Abstract: We investigate the upper bound on angular momentum transport in Taylor-Couette flow theoretically and numerically by a one-dimensional background field method. The flow is bounded between a rotating inner cylinder of radius R_{i} and a fixed outer cylinder of radius R_{o}. A variational problem is formulated and solved by a pseudo-time-stepping method up to a Taylor number Ta=10^{9}. The angular momentum transport, characterized by a Nusselt number Nu, is bounded by Nu≤cTa^{1/2}, where the prefactor c depends on the radius ratio η=R_{i}/R_{o}. Three typical radius ratios are investigatedi.e., η=0.5,0.714,and0.909, and the corresponding prefactors c=0.0049,0.0075,and0.0086 are found to improve (lower) the rigorous upper bounds by Doering and Constantin [C. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)PRLTAO0031-900710.1103/PhysRevLett.69.1648] and Constantin [P. Constantin, SIAM Rev. 36, 73 (1994)SIREAD0036-144510.1137/1036004] by at least one order of magnitude. Furthermore, we show, via an inductive bifurcation analysis, that considering a three-dimensional background velocity field is unable to lower the bound.[Abstract] [Full Text] [Related] [New Search]