These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ionization states of the complex formed between 2-benzyl-3-phosphonopropionic acid and carboxypeptidase A.
    Author: Goli UB, Grobelny D, Galardy RE.
    Journal: Biochem J; 1988 Sep 15; 254(3):847-53. PubMed ID: 3196297.
    Abstract:
    The binding to carboxypeptidase A of two phosphonic acid analogues of 2-benzylsuccinate, 2-DL-2-benzyl-3-phosphonopropionic acid (inhibitor I) and 2-DL-2-benzyl-3-(-O-ethylphosphono)propionic acid (inhibitor II) was studied by observing their 31P resonances when free and bound to the enzyme in the range of pH from 5 to 10. The binding of I by co-ordination to the active-site Zn(II) lowered the highest pKa of I from a value of 7.66(+/- 0.10) to a value of 6.71(+/- 0.17). No titration of any protons on II occurred over the pH range studied. The enzyme-bound inhibitor II also did not titrate over the pH range 6.17-7.60. The pH-dependencies of the apparent inhibition constants for I and II were also investigated by using N-(-2-(furanacryloyl)-L-phenylalanyl-L-phenylalanine as substrate. Two enzymic functional groups with pKa values of 5.90(+/- 0.06) and 9.79(+/- 0.14) must be protonated for binding of inhibitor I, and two groups with pKa values of 6.29(+/- 0.10) and 9.19(+/- 0.15) for binding of inhibitor II. Over the pH range from 6.71 to 7.66, inhibitor I binds to the enzyme in a complex of the enzyme in a more protonated form, and the inhibitor in a less protonated form than the predominant unligated forms at this pH. Mock & Tsay [(1986) Biochemistry 25, 2920-2927] made a similar finding for the binding of L-2-(1-carboxy-2-phenylethyl)-4-phenylazophenol over a pH range of nearly 4 units. The true inhibition constant for the dianionic form of inhibitor I (racemic) was calculated to be 54.0(+/- 5.9) nM and that of the trianionic form to be 5.92(+/- 0.65) nM. The true inhibition constant of the fully ionized II (racemic) was calculated to be 79.8(+/- 6.4) nM.
    [Abstract] [Full Text] [Related] [New Search]