These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Traction force microscopy for understanding cellular mechanotransduction. Author: Hur SS, Jeong JH, Ban MJ, Park JH, Yoon JK, Hwang Y. Journal: BMB Rep; 2020 Feb; 53(2):74-81. PubMed ID: 31964473. Abstract: Under physiological and pathological conditions, mechanical forces generated from cells themselves or transmitted from extracellular matrix (ECM) through focal adhesions (FAs) and adherens junctions (AJs) are known to play a significant role in regulating various cell behaviors. Substantial progresses have been made in the field of mechanobiology towards novel methods to understand how cells are able to sense and adapt to these mechanical forces over the years. To address these issues, this review will discuss recent advancements of traction force microscopy (TFM), intracellular force microscopy (IFM), and monolayer stress microscopy (MSM) to measure multiple aspects of cellular forces exerted by cells at cell-ECM and cell-cell junctional intracellular interfaces. We will also highlight how these methods can elucidate the roles of mechanical forces at interfaces of cell-cell/cell-ECM in regulating various cellular functions. [BMB Reports 2020; 53(2): 74-81].[Abstract] [Full Text] [Related] [New Search]